On the Isomorphism of a Quantum Logic with the Logic of the Projections in a Hilbert Space. II

R. CIRELLI, P. COTTA-RAMUSINO and E. NOVATI

Istituto di Scienze Fisiche Fisiehe dell'Universitd, 20133, *Milano, Italy Istituto Nazionale di Fisica Nucleate, Sezione di Milano*

Received: 2 April 1974

Abstract

The results about the isomorphism of a quantum logic $\mathscr L$ with the logic of the projections in a separable Hilbert space previously obtained with the introduction of the topology of states are completed, including the case of non-separable Hilbert space, and showing that the continuity of the antiautomorphism θ of the division ring \mathbb{R}, \mathbb{C} or \mathbb{Q} determined by $\mathscr L$ follows from the general topological assumptions on $\mathscr L$.

1. Introduction

The introduction in a logic $\mathscr{L}(a \sigma$ -complete, orthocomplemented and weakly modular lattice) of the so-called *topology of states* (see the Appendix) allowed us, in a preceding paper (Cirelli & Cotta-Ramusino, 1973), to formulate conditions under which the division ring determined by $\mathscr L$ is the real field $\mathbb R$, the complex field C or the quaternion division ring $\mathbb Q$. The main result we obtained can be summarised in the following theorem (Cirelli & Cotta-Ramusino, 1973, Theorem 5.2).

Let $\mathscr L$ be a logic and let $\mathscr L$ be endowed with the topology of states. Then:

- (1) if \mathscr{L} is a projective logic such that every family of mutually orthogonal points is at most countable and conditions \mathscr{L}_1 - \mathscr{L}_5 below are satisfied, then $\mathscr L$ is isomorphic to the projective logic $\mathscr L(V,\langle.,.\rangle)$ of all linear manifolds closed relative to the θ -bilinear form $\langle \cdot, \cdot \rangle$, where V is a (left) linear space over \mathbb{R} , \mathbb{C} or \mathbb{Q} with dim $V \ge 4$;
- (2) if in addition the antiautomorphism θ of the division ring \mathbb{R} , \mathbb{C} or \mathbb{Q} is continuous then V is a separable Hilbert space over \mathbb{R}, \mathbb{C} or \mathbb{Q} respectively.

Conversely, if $\mathscr L$ is isomorphic to the logic $\mathscr L(\mathscr H,\mathbb D)$ of the projections in a separable Hilbert space $\mathscr H$ over $\mathbb D (\mathbb R, \mathbb C$ or $\mathbb Q)$ with dim $\mathscr H \geq 4$, then $\mathscr L$ is a

Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without
written permission of Plenum Publishing Company

projective logic such that every family of mutually orthogonal points is at most countable, conditions $\mathscr{L}_1 - \mathscr{L}_5$ are satisfied and the automorphism θ is continuous.

Conditions $\mathscr{L}_1 - \mathscr{L}_5$ are the following:

- $({\cal G}_1)$ s(a) = s(b) for every pure state s implies $a = b$, namely the set ${\cal P}$ of pure states is separating,
- (\mathscr{L}_2) for any finite element a of \mathscr{L}, \mathscr{L} [0, a] is a compact subset of \mathscr{L} ,
- (\mathscr{L}_3) \mathscr{L} is second countable,
- (\mathcal{L}) for any line l of $\mathcal L$ the set of all points of ℓ but one arbitrary chosen is a connected set,
- (\mathscr{L}_5) no plane of $\mathscr L$ is trivial, for any plane u of $\mathscr L$ the intersection point of two lines in u is a continuous function of the two lines and the union line of two points in u is a continuous function of the two points.

In this paper we will enlarge these results in two respects: first we shall drop from the theorem the condition of separability of the Hilbert space, second we shall show that the continuity of the antiautomorphism θ follows from the general topological assumptions on $\mathscr L$. Precisely we shall show that the following theorem holds.

Theorem 1.1. Let $\mathscr L$ be a logic and let $\mathscr L$ be endowed with the topology of states. A necessary and sufficient condition in order that $\mathscr L$ be isomorphic to the logic $L^{p}(\mathcal{H}, \mathbb{D})$ of the projections in a Hilbert space \mathcal{H} over $\mathbb{D}(\mathbb{R}, \mathbb{C})$ or \mathbb{Q}) with dim $\mathcal{H} \geq 4$ is that \mathcal{L} be a complete projective logic satisfying conditions \mathscr{L}'_1 - \mathscr{L}'_5 below. Moreover the Hilbert space \mathscr{H} is separable if and only if \mathscr{L} is such that every family of mutually orthogonal points is at most countable.

such that every family of mutually orthogonal points is at most countable.
Conditions \mathcal{L}'_1 , \mathcal{L}'_2 , \mathcal{L}'_4 and \mathcal{L}'_5 are the same as \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_4 and \mathcal{L}_5 respectively while condition \mathscr{L}'_3 reads as follows:

 (\mathscr{L}'_3) for every finite element a of \mathscr{L} , $\mathscr{L}[0, a]$ is second countable.

2. Proof of the Theorem

Let H be a Hilbert space over $\mathbb{D}(\mathbb{R}, \mathbb{C})$ or \mathbb{Q}) with dim $\mathscr{H} \geq 4$. Then $\mathscr{L}(\mathscr{H})$ •) is a complete projective logic (Varadarajan, 1968, Theorem 7.40). Moreover from the Gleason theorem[†] it follows that the topology of states in $\mathcal{L}(H, \mathbb{D})$ coincides with the induced weak operator topology (Cirelli & Cotta-Ramusino, 1973, Theorem 4.1). On account of this we have immediately that $\mathscr{L}(\mathscr{H}, \mathbb{D})$ endowed with the topology of states satisfies condition \mathscr{L}'_1 and we can proceed exactly in the same way as in Cirelli & Cotta-Ramusino (I973, Section 3) to prove that $\mathscr{L}(\mathscr{H}, \mathbb{D})$ satisfies conditions \mathscr{L}'_4 and \mathscr{L}'_5 , while the fact that $\mathscr{L}(H, \mathbb{D})$ satisfies conditions \mathscr{L}'_2 and \mathscr{L}'_3 follows from the following lemma which is a slight modification of Theorem 3.1 in Cirelli & Cotta-Ramusino (1973).

"~ The Gleason theorem holds also for non-separable Hilbert spaces. We are very much indebted to Prof. M. Guenin for a private communication on this extension of the Gleason theorem.

Lemma 2.1. Let Q be a projection of finite rank. Then the geometry $\mathscr{L}[0, Q]$ is a second countable compact subset of $\mathscr{L}(\mathscr{H}, D)$.[†]

Let now $\mathscr L$ be a logic endowed with the topology of states and let $\mathscr L$ be isomorphic to $\mathcal{L}(\mathcal{H}, D)$. Then from Theorem A.1 in the Appendix we have that the topology of states in $\mathscr L$ coincides with the topology transferred from $\mathscr{L}(\mathscr{H}, \mathbb{D})$ by the isomorphism. Therefore the logic \mathscr{L} is a complete projective logic satisfying conditions $\mathscr{L}'_1 - \mathscr{L}'_5$.

Conversely, let $\mathscr L$ be a complete projective logic satisfying conditions $\mathscr L'_{1}$ - \mathscr{L}'_5 . From Varadarajan (1968, Theorem 7.40) and from Cirelli & Cotta-Ramusino (1973, Section 5) we have that $\mathscr L$ is isomorphic to the logic $\mathscr L(V, \mathbb R)$ $\langle ., . \rangle$), where V is a vector space over $\mathbb{D}(\mathbb{R}, \mathbb{C}$ or $\mathbb{Q})$ with dim $V \geq 4$ and $\langle ., . \rangle$ is a θ -bilinear form on $V \times V$ related to the antiautomorphism θ induced by the logic on D. Indeed the proof of Theorem 5.1 in Cirelli & Cotta-Ramusino (1973) is still valid if one substitutes conditions \mathscr{L}'_1 - \mathscr{L}'_5 for conditions \mathscr{L}_1 - \mathscr{L}_5 and requires the completeness of the logic instead of the property that every family of mutually orthogonal points is at most countable.

If we now admit that conditions $\mathscr{L}'_1-\mathscr{L}'_5$ imply that the antiautomorphism θ is continuous, then $\langle ., . \rangle$ is an inner product and, on account of Varadarajan (1968, Lemma 7.42), which ensures us the completeness of the space V , we have that the logic $\mathscr L$ is isomorphic to a logic $\mathscr L(\mathscr H,\mathbb D)$. Moreover, it is obvious that $\mathcal H$ is separable if and only if the logic $\mathcal L(\mathcal H, \mathbb D)$ has the property that every family of mutually orthogonal points is at most countable.

Thus to have the complete proof of the theorem we have only to show that conditions \mathscr{L}'_1 - \mathscr{L}'_5 imply the continuity of the antiautomorphism θ .

3. Continuity of the Antiautomorphism 0

Let $\mathscr L$ be a complete projective logic which satisfies conditions $\mathscr L'_1-\mathscr L'_5$. As we have seen in Section 2, $\mathscr L$ is isomorphic to the projective logic $\mathscr L(V,$ $\langle ., . \rangle$ of all $\langle ., . \rangle$ -closed linear manifolds of a linear space V over $\mathbb{D}(\mathbb{R}, \mathbb{C}$ or \mathbb{O}) with dim $V \ge 4$. The isomorphism $\zeta : \mathscr{L} \to \mathscr{L}(V, \langle \cdot, \cdot \rangle)$ is constructed in the following way.

Let $\check{\mathscr{L}}':=\{a\in \mathscr{L}|a \text{ finite}\}\;;\mathscr{L}'$ is a generalised geometry eventually of infinite dimension. Let (O, P_i) , $j \in J$, be a frame at O in \mathscr{L}' . If for any $j \in J$ we fix a point E_i on the axis $m_i = O \vee P_i$ distinct from O and P_i we may construct the division ring $D_i = D_i(O, E_i, P_i)$ on m_i with O, E_i , P_i as origin, unit

 \dagger Proof of Lemma 2.1:
Let K = Range (Q) and let ${\mathscr V}_O$ be the linear manifold in ${\mathscr B}$ (#) (the algebra of all bounded operators on \mathscr{H}) generated by the elements of $\mathscr{L}[0, Q]$. To every operator $A \in \mathscr{V}_Q$ we can associate its restriction A to K. Obviously \tilde{A} belongs to $\mathscr{B}(K)$ and the correspondence $A \rightarrow \tilde{A}$ from \mathscr{V}_O into $\mathscr{B}(K)$ can be easily shown to be linear and injective. Therefore \mathscr{V}_O is a finite dimensional linear manifold of $\mathscr{B}(H)$. Then on \mathscr{V}_O the induced weak, strong and uniform topologies coincide with the 'euclidean' topology. Considering $\mathscr{L}[0, Q]$ as a subset of \mathscr{V}_Q one has immediately that $\mathscr{L}[0, Q]$ is second countable and bounded; moreover, essentially by the same arguments as in the proof of Theorem 3.1 in Cirelli & Cotta-Ramusino (1973), it can be proved that it is closed in \mathcal{V}_Q . Therefore $\mathscr{L}[0, Q]$ is second countable and compact.

point and point at infinity respectively. All the division rings D_i are isomorphic and there exist a division ring D and a set of isomorphisms φ_i of D_i onto D such that the following diagrams are commutative

> \mathbb{D}_i D (3.1)

where the isomorphism φ_{ij} of D_i with D_j is given by $\varphi_{ij}(X) = (X \vee P_{ij}) \wedge m_j$ *(P_{ij}* is the intersection point of the lines $E_i \vee E_j$ and $P_i \vee P_j$).

To every point $Q \in \mathscr{L}'$ not lying at infinity (in symbols: $Q \not\leq \mathscr{L}'_{\infty}$), that is such that, for every finite subset K of J ,

$$
Q \triangleleft u(K)
$$

where

$$
u(K) = \begin{cases} 0 & \text{if } K = \emptyset \text{ (the void set)}\\ \frac{V}{j \in K} P_j & \text{if } K \neq \emptyset, \end{cases}
$$

we can associate the set of points $\{M_j^Q\}$, $j \in J$, with M_j^Q given by

$$
M_j^Q = 0, \quad \forall j \in J, \quad \text{if } Q = 0
$$

\n
$$
M_j^Q = (Q \lor u(K - \{j\})) \land m_j, \quad \text{if } Q \neq 0, j \in K
$$

\n
$$
M_j^Q = 0, \quad \text{if } Q \neq 0, \quad j \notin K,
$$
\n(3.2)

where K is any finite subset of J such that $Q < O \vee u(K)$ (M_1^Q , $j \in J$, does not depend on the choice of such a subset K (Varadarajan, 1968, Lemma 5.18)). One has obviously

$$
M_i^Q \in \mathbb{D}_i, \qquad j \in J \tag{3.3}
$$

Let now V be the (left) free linear space over $\mathbb D$ generated by $J \cup \{ \infty \},$ where ∞ is one more element added to the set of indices J. To every point $Q \in \mathscr{L}'$ such that $Q \not\leq \mathscr{L}'_{\infty}$ we can associate a vector $gQ \in V$ in the following way

$$
g^{Q}(j) = \varphi_{j}(M_{j}^{Q}), \qquad j \in J
$$

$$
g^{Q}(\infty) = 1
$$
 (3.4)

where 1 is the unit element of D . To shorten the notation we shall write $g^{Q} = {\varphi_i(M_i^Q), 1}$. If on the contrary Q is a point belonging to \mathscr{L}'_{∞} we can choose a point $Q' < O \vee Q$ such that $Q' \neq Q$ and $Q' \neq O$. Then $Q' \preceq \mathcal{L}'_{\infty}$ and we can associate to Q the vector.

$$
g^{Q,Q'} = \{\varphi_j(M_j^Q), 0\} \tag{3.5}
$$

where 0 is the zero element of D.

If $\mathscr{L}(V, \mathbb{D})$ is the generalised geometry of all finite dimensional subspaces of V , then

$$
Q \longrightarrow \gamma(Q) := \begin{cases} \mathbb{D}.g^Q, & \text{if } Q \leq \mathscr{L}'_{\infty} \\ \mathbb{D}.g^Q Q', & \text{if } Q < \mathscr{L}'_{\infty} \end{cases} \tag{3.6}
$$

is a one-one collinearity preserving map of the set of all the points of the generalised geometry \mathscr{L}' onto the set of all points of the generalised geometry $\mathscr{L}(V, \mathbb{D})$ (Varadarajan, 1968, Lemma 5.25) (remark that $\mathbb{D} \mathscr{L}^{\mathcal{QQ}'}$ does not depend on the choice of the point Q').

The desired isomorphism $\zeta : \mathscr{L} \to \mathscr{L}(V, \langle , , . \rangle)$ is given by

$$
a \longrightarrow \zeta(a) := \{ x \in V \mid x \in \gamma(P) \text{ for some point } P < a \} \tag{3.7}
$$

Let now a_n be a fixed finite element of $\mathscr L$ such that dim a_n (= dim $\mathscr L[0, \mathscr L]$ a_n]) = n ≥ 4 . Henceforth it will be understood that the frame $(0, P_i)$ is an 'adapted' one to $\mathscr{L}[\mathbf{0}, a_n]$. This simply means that O and $n - 1$ out of the P_i belong to $\mathscr{L}[0, a_n]$ (these $n-1$ points will be denoted by $P_1, P_2, \ldots, P_{n-1}$). The restriction to $\mathscr{L}[0, a_n]$ of the isomorphism ζ will be called ξ . Under the ordering inherited from $\mathscr L$ and the orthocomplementation

$$
f: \mathscr{L}[0, a_n] \to \mathscr{L}[0, a_n], \qquad b \to b^+ := b^* \wedge a_n \tag{3.8}
$$

where b^* is the orthocomplementation of b in $\mathscr{L}, \mathscr{L}[0, a_n]$ is a logic. On $\mathcal{L}(V_n, \mathbb{D})$, where V_n is the *n*-dimensional linear space over \mathbb{D} given by $V_n = \xi(a_n)$ the map

$$
\perp : \mathcal{L}(V_n, \mathbb{D}) \to \mathcal{L}(V_n, \mathbb{D}), \qquad B = \xi(b) \to B^\perp := \xi(b^+) \tag{3.9}
$$

is an orthocomplementation. Thus $\mathscr{L}(V_n, \mathbb{D})$ is a logic and ξ is an isomorphism of $\mathscr{L}[\mathbf{0}, a_n]$ with $\mathscr{L}(V_n, \mathbb{D})$.

From Theorem A.1 of the Appendix the isomorphism ζ is also a homeomorphism when on L^2 and $L^2(V, \langle ., . \rangle)$ we introduce the topologies of states. If on $\mathscr{L}[0, a_n]$ and on $\mathscr{L}(V_n, \mathbb{D})$ we consider the induced topologies, ξ as well as a homeomorphism.

We now proceed to the study of the antiautomorphism θ of $\mathbb D$ associated to the θ -bilinear form $\langle ., . \rangle$ on $V \times V$. Let \mathbb{D}^0 be the division ring dual to \mathbb{D} , V_n^* the space dual to V_n and $\mathscr{L}(V_n^*, \mathbb{D}^0)$ the lattice of subspaces of V_n^* (note that V_n^* is considered as an *n*-dimensional linear space over \mathbb{D}^0). We introduce the maps

$$
{}^{0}: \mathscr{L}(V_{n}, \mathbb{D}) \to \mathscr{L}(V_{n}^{*}, \mathbb{D}^{0}), \qquad M \to M^{0} := \{\lambda \in V_{n}^{*} \mid \lambda(x) = 0, \forall x \in M\}
$$
\n(3.10)

and

$$
\eta \colon \mathscr{L}(V_n, \mathbb{D}) \to \mathscr{L}(V_n^*, \mathbb{D}^0), \qquad M \to \eta(M) := (M^{\perp})^0 \tag{3.11}
$$

One can verify that η is an isomorphism between geometries. On $\mathscr{L}(V_n^*, \mathbb{D}^0)$ we consider the quotient topology relative to η and to the topology of $\mathscr{L}(V_n)$,

 \mathbb{D}), then the induced topology on \mathbb{D}^0 (considered as a subset of a certain line of $\mathscr{L}(V_n^*, \mathbb{D}^0)$) is the euclidean topology, that is the same topology as on $\mathbb D$.

Now we define a relation between the vectors of V_n and V_n^* . We say that $x \in V_n$ is related to $\tilde{x} \in V_n^*$, and write $x \sim \tilde{x}$, if $x \neq 0$, $\tilde{x} \neq 0$ and $\eta(\mathbb{D}.x) =$ \mathbb{D}^0 . \tilde{x} . From Varadarajan (1968, Lemma 3.2) we know that if $x \in V_n$ and $\tilde{x} \in V_n^*$ are such that $x \sim \tilde{x}$, then for any $y \in V_n$ such that $y \neq 0$ and $\mathbb{D} \cdot y \neq 0$ $\mathbb{D}.$ x there exists a unique $\tilde{y} \in V_n^*$ such that $y \sim \tilde{y}$ and $x - y \sim \tilde{x} - \tilde{y}$. Hence for every pair (x, \tilde{x}) such that $x \sim \tilde{x}$ the following map is well defined

$$
T_{x,\widetilde{x}} : V_n - \mathbb{D} \cdot x \to V_n^*, \qquad T_{x,\widetilde{x}}(y) = \widetilde{y} \tag{3.12}
$$

where \tilde{y} is the unique vector such that $y \sim \tilde{y}$ and $x - y \sim \tilde{x} - \tilde{y}$.

We want to construct explicitly such a vector \tilde{y} given any $x \in V_n$, $x \neq 0$, and a related vector $\tilde{x} \in V_n^*$ chosen in a way suitable for our purposes.

We set $x = \{x_i, x_n\}, y = \{y_i, y_n\}, i \in \mathcal{F} = \{1, 2, ..., n - 1\}$ and suppose $x_n \neq 0$, $y_n \neq 0$ and $x_n \neq y_n$ (this is not a restriction because, with a suitable change of coordinates, we can always have this situation).

We put also

$$
g^{x} = x_{n}^{-1}x = \{g_{i}^{x}, 1\}, \qquad i \in \mathcal{F}
$$
 (3.13)

$$
g^{\mathcal{Y}} = y_n^{-1} y = \{g_i^{\mathcal{Y}}, 1\}, \qquad i \in \mathcal{F} \tag{3.14}
$$

and consider the points $X = \xi^{-1}(\mathbb{D}.x) = \xi^{-1}(\mathbb{D}.g^x)$ and $Y = \xi^{-1}(\mathbb{D}.y) =$ $\xi^{-1}(\mathbb{D}.g^y)$ of $\mathscr{L}[0, a_n]$. Obviously these points do not lie at infinity and we have, introducing their 'coordinates' M_i^X and M_i^Y (see (3.2)),

$$
g_i^x = \varphi_i(M_i^X), \qquad g_i^y = \varphi_i(M_i^Y), \qquad i \in \mathcal{J}
$$
 (3.15)

Since η is an isomorphism, defining

$$
\widetilde{O} = (\eta \circ \xi)(O), \qquad \widetilde{P}_i = (\eta \circ \xi)(P_i), \qquad i \in \mathcal{J}
$$

we have that $(0, P_i)$ is a frame at O in $\mathscr{L}(V_n, \mathbb{D}^0)$ such that the points $X = (\eta \circ \xi)(X)$ and $Y = (\eta \circ \xi)(Y)$ do not lie at infinity. The axes of this frame are $m_i = O_y$ $P_i = (n \circ \xi)(m_i)$ and on these lines we can construct the division rings $\tilde{D}_i = \tilde{D}_i(\tilde{O}, \tilde{E}_i, \tilde{P}_i)$ with $\tilde{O}, \tilde{E}_i = (n \circ \xi)(E_i)$ and \tilde{P}_i as origin, unit point and point at infinity respectively. Moreover between these division rings and the division ring \mathbb{D}^0 there exist isomorphisms such that the following diagrams are commutative

$$
\tilde{\tilde{\varphi}}_i \longrightarrow \tilde{\tilde{\varphi}}_j \qquad \qquad \tilde{\tilde{\varphi}}_i
$$
\n
$$
\tilde{\varphi}_i \longrightarrow \tilde{\varphi}_j \qquad (3.16)
$$

All the $\tilde{\varphi}_i$ and $\tilde{\varphi}_{ii}$ are suitable projectivities, therefore also homeomorphisms. In the same way as in (3.2) we associate to X and Y their 'coordinates' $M_i^X \in D_i$ and $M_i^Y \in D_i$ with respect to the frame (O, P_i) and obviously we have

$$
\widetilde{M}_i^{\widetilde{X}} = (\eta \circ \xi)(M_i^X), \qquad \widetilde{M}_i^{\widetilde{Y}} = (\eta \circ \xi)(M_i^Y), \qquad i \in \mathcal{J} \qquad (3.17)
$$

Now, as in (3.4), we define the vectors $\tilde{g}^{\tilde{X}} \in V_n^*$ and $\tilde{g}^{\tilde{Y}} \in V_n^*$ setting

$$
\tilde{g}^{\tilde{X}} = {\tilde{\varphi}_i(\tilde{M}_i^{\tilde{X}}), 1^0}, \qquad \tilde{g}^{\tilde{Y}} = {\tilde{\varphi}_i(M_i^{\tilde{Y}}), 1^0}
$$
\n(3.18)

where 1^0 is the unit element of \mathbb{D}^0 . From Varadarajan (1968, Lemma 5.25) we have that

$$
\tilde{X} = \tilde{\gamma}(\mathbb{D}^0 \cdot \tilde{g}^{\tilde{X}}), \qquad \tilde{Y} = \tilde{\gamma}(\mathbb{D}^0 \cdot \tilde{g}^{\tilde{Y}})
$$
\n(3.19)

where $\tilde{\gamma}$ is a one-one collinearity preserving map of the set of all the points of $\mathscr{L}(V_n^*, \mathbb{D}^0)$ onto itself, namely an element of the projective group $PGL(V_n^*)$ (MacLane & Birkhoff, 1970, Chap. XII). Hence, in virtue of a very well-known theorem of projective geometry (MacLane & Birkhoff, 1970, Chap. XII, Theorem 17) we can write

$$
\widetilde{\gamma}(\mathbb{D}^0 \cdot \widetilde{g}^{\widetilde{X}}) = \mathbb{D}^0 \cdot \widetilde{\Gamma}(\widetilde{g}^{\widetilde{X}}), \qquad \widetilde{\gamma}(\mathbb{D}^0 \cdot \widetilde{g}^{\widetilde{Y}}) = \mathbb{D}^0 \cdot \widetilde{\Gamma}(\widetilde{g}^{\widetilde{Y}})
$$
(3.20)

where $\tilde{\Gamma}$ is an element of the group $GL(V_n^*)$ of the automorphisms of V_n^* determined by $\tilde{\gamma}$ up to a non-zero scalar multiple of the identity automorphism of V_n^* .

Let now $z = x - y$ and set

$$
g^{z} = z_{n}^{-1} z = (x_{n} - y_{n})^{-1} (x - y)
$$
 (3.21)

The point $Z = \xi^{-1}(D \cdot z) = \xi^{-1}(D \cdot z^z)$ does not lie at infinity and we have, introducing its 'coordinates' M_i^2 ,

$$
g_i^z = \varphi_i(M_i^Z), \qquad i \in \mathcal{F} \tag{3.22}
$$

Between the 'coordinates' M_i^Z of Z and \widetilde{M}_i^Z of $\widetilde{Z} = (\eta \circ \xi)(Z)$ the relation

$$
\widetilde{M}_i^{\,2} = (\eta \circ \xi)(M_i^{\,2}), \qquad i \in \mathcal{F} \tag{3.23}
$$

holds and defining the vector $\tilde{g} \tilde{z} \in V_p^*$ by

$$
\tilde{g}^{\tilde{Z}} = {\{\tilde{\varphi}_i(\tilde{M}_i^{\tilde{Z}}), 1^0\}}
$$
\n(3.24)

we can write, as above,

$$
\widetilde{Z} = \widetilde{\gamma}(\mathbb{D}^0. \widetilde{g}^{\widetilde{Z}}) = \mathbb{D}^0. \widetilde{\Gamma}(\widetilde{g}^{\widetilde{Z}})
$$
\n(3.25)

Now

$$
g_i^Z = (x_n - y_n)^{-1} (x_i - y_i) = (x_n - y_n)^{-1} x_n g_i^x - (x_n - y_n)^{-1} y_n g_i^y,
$$

\n
$$
i \in \mathcal{F}
$$
 (3.26)

Since the operations on the division rings \mathbb{D}_i and $\tilde{\mathbb{D}}_i$ are defined by projectivities (Varadarajan, 1968, Chap. V) and η and ξ are isomorphisms, taking into account (3.15) , (3.17) , (3.18) , (3.22) , (3.23) and (3.24) , from (3.26) we obtain

$$
\tilde{g}_i^{\ \tilde{Z}} = (\rho(x_n) - \rho(y_n))^{-1} \rho(x_n) \tilde{g}_i^{\ \tilde{X}} - (\rho(x_n) - \rho(y_n))^{-1} \rho(y_n) \tilde{g}_i^{\ \tilde{Y}}, \quad i \in \mathcal{F}
$$
\n(3.27)

where

$$
\rho = \tilde{\varphi}_s \circ \eta \circ \xi \circ \tilde{\varphi}_s^{-1} \tag{3.28}
$$

with s any one index belonging to $\mathscr T$.

From (3.20) and (3.25) we have

$$
\eta(\mathbb{D}\cdot x) = \mathbb{D}^0 \cdot \tilde{\Gamma}(\tilde{g}^{\tilde{X}})
$$
\n(3.29)

$$
\eta(\mathbb{D}, y) = \mathbb{D}^0 \cdot \tilde{\Gamma}(\tilde{g}^Y) \tag{3.30}
$$

$$
\eta(\mathbb{D}.(x-y)) = \mathbb{D}^0 \cdot \tilde{\Gamma}(\tilde{g}^Z)
$$
\n(3.31)

From (3.29) we infer that $x \sim \Gamma(\tilde{g}^{\lambda})$. We choose as a related vector to x exactly $\Gamma(\tilde{g}^{\Lambda})$ and look for the unique y such that $y \sim y$ and $x - y \sim \Gamma(\tilde{g}^{\Lambda})$ y. Since η is a lattice isomorphism and $\mathbb{D}.x \neq \mathbb{D}y$ it follows that for every nonzero vector $\tilde{y}' \in \eta(\mathbb{D}, y)$ there exist $a, b \in \mathbb{D}^0, a \neq 0, b \neq 0$, such that

$$
\eta(\mathbb{D}.(x-y)) = \mathbb{D}^0 \cdot (a\widetilde{\Gamma}(\widetilde{g}^{\widetilde{X}}) + b\widetilde{y}') \tag{3.32}
$$

If we take as \tilde{y}' the vector $\tilde{\Gamma}(\tilde{g}^{\tilde{Y}})$ (see (3.30)) from (3.32) and (3.31) we have

$$
\mathbb{D}^{0} \cdot (a\widetilde{\Gamma}(\widetilde{g}^{\widetilde{X}}) + b\widetilde{\Gamma}(\widetilde{g}^{\widetilde{Y}})) = \mathbb{D}^{0} \cdot \widetilde{\Gamma}(\widetilde{g}^{\widetilde{Z}})
$$
(3.33)

Obviously we can choose *a*, *b* such that $a + b = 1^{\circ}$. Then we obtain

$$
a\widetilde{g_i}^{\widetilde{X}} + b\widetilde{g_i}^{\widetilde{Y}} = \widetilde{g_i}^{\widetilde{Z}}
$$

whence, taking into account (3.27),

$$
a = (\rho(x_n) - \rho(y_n))^{-1} \rho(x_n), \qquad b = -(\rho(x_n) - \rho(y_n))^{-1} \rho(y_n)
$$
\n(3.34)

The wanted vector \tilde{y} such that $y \sim \tilde{y}$ and $x - y \sim \tilde{\Gamma}(\tilde{g}^{\tilde{X}}) - \tilde{y}$ is now given by

$$
\tilde{y} = -a^{-1}b\tilde{\Gamma}(\tilde{g}^{\tilde{Y}}) = (\rho(x_n))^{-1}\rho(y_n)\tilde{\Gamma}(\tilde{g}^{\tilde{Y}})
$$
\n(3.35)

Let now u^1, u^2 and u^3 be three independent vectors of V_n and let $\tilde{u}^1 \in V_n^*$ be such that $u^1 \sim \tilde{u}^1$. Setting $\tilde{u}^2 = T_{u^1, \tilde{u}}(u^2)$ and $\tilde{u}^3 = T_{u^1, \tilde{u}}(u^3)$ the following map can be defined (Varadarajan, 1968, Lemma 3.9)

$$
L: V_n \to V_n^*,
$$

\n
$$
Lx = \begin{cases} 0, & \text{if } x = 0, \\ T_{u^l, \tilde{u}^l}(x) & \text{with } l \in \{1, 2, 3\} \text{ such that } \mathbb{D}.x \neq \mathbb{D}.u^l, \text{if } x \neq 0 \end{cases}
$$
\n(3.36)

For $x \neq 0$ the relation $x \sim Lx$ holds. Thus the equation

$$
L(cx) = g(c, x)Lx \tag{3.37}
$$

holds for any $x \neq 0$ and any $c \in \mathbb{D}$, where $g(c, x) \in \mathbb{D}^0$ is such that $g(0, x) = 0^0$. In Varadarajan (1968, Lemmas 3.12 and 3.13) it is shown that in fact $g(c, x)$ does not depend on x and that the map

$$
\sigma: \mathbb{D} \to \mathbb{D}^0, \qquad \sigma(c) = g(c, x) \tag{3.38}
$$

where x is any non-zero vector of V_n , is an isomorphism of D onto D^0 .

We take now u^1 , u^2 and u^3 such that $u_n^l \neq 0$, $l \in \{1, 2, 3\}$, and $\rho(u_n^l) = 1^0$ and take as a vector \tilde{u}^1 related to u^1 the vector $\tilde{u}^1 = \tilde{\Gamma}(\tilde{g} \tilde{v}^1)$, where \tilde{U}^1 = $\eta(\mathbb{D}, u^1)$. Moreover we choose for the vector x in (3.37) a vector y such that *D.* $y \neq D$. u^1 , $y_n \neq 0$ and $y_n \neq u_n^1$. Then from (3.13)-(3.26) we have

$$
Ly = \rho(y_n)\tilde{\Gamma}(\tilde{g}^{\tilde{Y}})
$$
 (3.39)

and, for any $c \neq y_n^{-1}$,

$$
L(c\mathbf{y}) = \rho(c\mathbf{y}_n)\tilde{\Gamma}(\tilde{\mathbf{g}}^{\tilde{Y}}) = \rho(c)\rho(\mathbf{y}_n)\tilde{\Gamma}(\tilde{\mathbf{g}}^{\tilde{Y}})
$$
(3.40)

Therefore, from (3.27) we obtain

$$
g(c, x) = \rho(c), \qquad c \neq y_n^{-1}
$$
 (3.41)

Since ρ is continuous, from (3.41) it follows that the isomorphism σ is continuous and then that $\sigma(c) = \rho(c)$ for every $c \in \mathbb{D}$.

From Varadarajan (1968, Theorems 3.1,4.1,4.5, 4.6 and 7.40) it follows that the antiautomorphism θ is given by $\theta(c) = d\rho(c) d^{-1}$, where d is a suitable non-zero element of $\mathbb D$ (obviously ρ is now regarded as an antiautomorphism of D). Then we can conclude that the antiautomorphism θ is continuous.

This completes the proof of the theorem.

Appendix

Let $\mathscr L$ be any logic and $\mathscr P$ the set of pure states of $\mathscr L$. The 'topology of states' is defined in the following way.

Given any net ${a_{\alpha}}_{\alpha\in A}$ in $\check{\mathscr{L}}$ we say that ${a_{\alpha}}'$ converges' to $a \in \mathscr{L}$, and write $a_{\alpha} \rightarrow a$, if for every $s \in \mathscr{P}$ the net $\{s(a_{\alpha})\}$ converges to $s(a)$ in the usual topology of R and take as the family of closed sets the family of the subsets N of $\mathscr L$ which satisfy the condition: $\{a_\alpha\}$ is a net in N and $a_\alpha \rightarrow a$ imply $a \in N$.

The following important theorem can be proved.

Theorem A. 1. Let L and L be two logics and $\xi : \mathcal{L} \rightarrow \tilde{\mathcal{L}}$ an isomorphism. If on $\mathscr L$ the topology of states is introduced, the quotient topology on $\tilde{\mathscr L}$ relative to ξ and to the topology of $\mathscr L$ is the topology of states on $\mathscr L$.

Proof. Let $\mathscr P$ and $\widetilde{\mathscr P}$ be the set of pure states on $\mathscr L$ and $\widetilde{\mathscr L}$, respectively. For any $s \in \mathscr{P}$ let $\tilde{s} = s \circ \xi^{-1}$. The correspondence $s \rightarrow \tilde{s}$ obviously is a bijection from $\mathscr P$ onto $\mathscr P$.

Let us introduce in $\tilde{\mathscr{L}}$ the quotient topology relative to ξ and to the topology of states on \mathscr{L} . Then ξ and ξ^{-1} are continuous maps (Kelley, 1955, page 94). We can prove that every subset of $\tilde{\mathscr{L}}$ closed in the quotient topology of $\hat{\mathscr{L}}$ is closed also in the topology of states of \mathscr{L} and vice versa.

If B is a subset of $\mathscr L$ closed in the quotient topology then $B = \xi^{-1}(B)$ is closed in L. Let $\{\tilde{a}_{\alpha}\}\$ be a net in B converging to $\alpha \in \mathcal{L}$, namely such that $s(a_{\alpha}) \rightarrow s(a), \forall s \in \mathscr{P}$. Then $\{a_{\alpha}\}\,$, where $a_{\alpha} = \xi^{-1}(a_{\alpha})$, is a net in B converging to $a = \xi^{-1}(a)$ since for any $s \in \mathscr{P}$ we can write $s = s \circ \xi$ and thus we have

$$
s(a_{\alpha}) = \widetilde{s}(\widetilde{a}_{\alpha}) \to \widetilde{s}(\widetilde{a}) = s(a), \qquad \forall s \in \mathscr{P}
$$

Since B is closed, a belongs to B. Therefore \tilde{a} belongs to \tilde{B} and this shows that \tilde{B} is closed in the topology of states.

Conversely if \tilde{E} is a subset of $\tilde{\mathscr{L}}$ closed in the topology of states then, setting $E = \xi^{-1}(E)$, for every net $\{a_{\alpha}\}\$ in E converging to $a \in \mathscr{L}$ we have that $\{\tilde{a}_{\alpha}\}$ where $a_{\alpha} = \xi(a_{\alpha})$, is a net in E converging to $a = \xi(a)$ since for any $s \in \mathscr{P}$ we can write $\tilde{s} = s \circ \xi^{-1}$ and thus we have

$$
\check{\widetilde{s}}(\widetilde{a}_{\alpha}) = s(a_{\alpha}) \to s(a) = \widetilde{s}(\widetilde{a}_{\alpha}), \qquad \forall \widetilde{s} \in \widetilde{\mathscr{P}}
$$

Therefore $a \in E$ and E is closed, namely \tilde{E} is closed in the quotient topology.

R eferen ces

CireUi, R. and Cotta-Ramusino, P. (1973). On the isomorphism of a 'quantum logic' with the logic of the projections in a Hilbert space. *International Journal of Theoretical Physics,* Vol. 8, No. 1, p. 11.

Kelley, J. L. (1955). *General Topology.* Van Nostrand Co., New York.

MacLane, S. and Birkhoff, G. (1970). *Algebra.* MacMillan Co., London.

Varadarajan, V. S. (t968). *Geometry of Quantum Theory,* Vot. 1, Van Nostrand Co., Princeton, New Jersey.