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Abstract 

The results about the isomorphism of a quantum logic c~, with the logic of the projections 
in a separable Hilbert space previously obtained with the introduction of the topology of 
states are completed, including the case of non-separable Hilbert space, and showing that 
the continuity of the antiautomorphism 0 of the division ring R, C or • determined by 
:T follows from the general topological assumptions on ~ ' ,  

1. Introduction 

The introduction in a logic ~f(a a-complete, orthocomplemented and 
weakly modular lattice) of the so-called topology of  states (see the Appendix) 
allowed us, in a preceding paper (Cirelli & Cotta-Ramusino, 1973), to formu- 
late conditions under which the division ring determined by ~ is the real field 
•, the complex field C or the quaternion division ring Q. The main result we 
obtained can be summarised in the following theorem (Cirelli & Cotta- 
Ramusino, 1973, Theorem 5.2). 

Let • be a logic and let ~q°be endowed with the topology of states. Then: 

(1) if2~ais a projective logic such that every family of mutually orthogonal 
points is at most countable and conditions ~qa 1-~¢a s below are satisfied, 
then ~qa is isomorphic to the projective logic 2T(V, <., .>) of all linear 
manifolds closed relative to the 0-bilinear form ( . , .  >, where V is a (left) 
linear space over N, C or Q with dim V >/4; 

(2) if in addition the antiautomorphism 0 of the division ring N, C or Q is 
continuous then Vis a separable Hilbert space over R, C or Q 
respectively. 

Conversely, if ~ is isomorphic to the logic ~a(X, •) of the projections in a 
separable Hilbert space ~ o v e r  D (R, C or Q) with dim 5/t ~ >~ 4, then £g is a 
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projective logic such that every family of mutually orthogonal points is at 
most countable, conditions ~oCf I-(~Cf s are satisfied and the automorphism 0 is 
continuous. 

Conditions &al-&as are the following: 
(~Z~I) s(a) = s(b) for every pure state s implies a = b, namely the set ~ of 

pure states is separating, 
(&a2) for any finite element a of~L~ °, ~q~ [0, a] is a compact subset of &a, 
(&a3) &a is second countable, 
(~C~a4) for any line l of ~f' the set of all points off 'but  one arbitrary 

chosen is a connected set, 
(~°s) no plane of &a is trivial, for any plane u of ~LP the intersection point 

of two lines in u is a continuous function of the two lines and the 
union line of two points in u is a continuous function of the two 
points. 

In this paper we will enlarge these results in two respects: first we shall drop 
from the theorem the condition of separability of the Hilbert space, second we 
shall show that the continuity of the antiautomorphism 0 follows from the 
general topological assumptions on ~q~. Precisely we shall show that the follow- 
ing theorem holds• 

Theorem 1.1. Let ~qo be a logic and let ~ be endowed with the topology of 
states. A necessary and sufficient condition in order that &a be isomorphic to 
the logic ~L~a(J~, D) of the projections in a Hilbert space o~over D(R, C or Q) 
with dim j r , >  4 is that &a be a complete projective logic satisfying conditions 

1-~'s below. Moreover the Hilbert space o~is separable if and only if ~ is 
such that every family of mutually orthogonal points is at most countable. 

• • f r Condmons &a 1, L~a2, &a~ and Ne~ are the same as ~q'l, &a2, &a4 and &as 
respectively while condition &a ~ reads as follows: 

(&a~) for every finite element a o f& a, &a [0, a] is second countable. 

2. Proof of  the Theorem 

LetJ fbe  a Hilbert space over D (R, C or Q) with dim ;¢f~> 4. Then &a (o~, 
•) is a complete projective logic (Varadarajan, 1968, Theorem 7.40). Moreover 
from the Gleason theoremt it follows that the topology of states in &a~(f, D) 
coincides with the induced weak operator topology (Cirelli & Cotta-Ramusino, 
t 973, Theorem 4.1). On account o f this we have immediately that &a (o~f, D) 
endowed with the topology of states satisfies condition ~f ~ and we can proceed 
exactly in the same way as in Cirelli & Cotta-Ramusino (I973, Section 3) to 
prove that &a(a~cf,, D) satisfies conditions ~ '~  and L~a~, while the fact that 
L~a(Jf, D) satisfies conditions-qf~ and ~L~a~ follows from the following temma 
which is a slight modification of Theorem 3.1 in Cirelli & Cotta-Ramusino 
(1973). 

"~ The Gleason theorem holds also for non-separable Hilbert spaces. We are very much 
indebted to Prof. M. Guenin for a private communication on this extension of the Gleason 
theorem. 
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Lernma 2.1. Let Q be a projection of  finite rank. Then the geometry 
~ [ 0 ,  Q] is a second countable compact subset o f ~ ( J P ,  D).? 

Let now ~ be a logic endowed with the topology of  states and let ~CP be 
isomorphic to oLa(~, '~, D). Then from Theorem A. 1 in the Appendix we have 
that the topology of  states in ,oCP coincides with the topology transferred from 
..o~P(3/t a, D) by the isomorphism. Therefore the logic 2oCP is a complete projective 
logic satisfying conditions ~ - . L P ~ .  

Conversely, let ~a be a complete projective logic satisfying conditions ~L~a]- 
~q~. From Varadarajan (1968, Theorem 7.40) and from Cirelli & Cotta- 
Ramusino (1973, Section 5) we have that ~ is isomorphic to the logic ~P(V, 
( . , . ) ) ,  where V is a vector space over D(R ,  C or Q) with dim V~> 4 and ( . , . )  
is a 0-bilinear form on V x V related to the antiautomorphism 0 induced by 
the logic on D. Indeed the proof of Theorem 5.1 in Cirelli & Cotta-Ramusino 

Le'Le' (1973) is still valid if one substitutes conditions 1- s for conditions ~al-~LP s 
and requires the completeness of  the logic instead of  the property that every 
family of  mutually orthogonal points is at most countable. 

If  we now admit that conditions ,oC, e~-.L~a~ imply that the antiautomorphism 
0 is continuous, then ( . , . )  is an inner product and, on account of  Varadarajan 
(1968, Lemma 7.42), which ensures us the completeness of  the space V, we 
have that the logic ~a is isomorphic to a logic ~ ( j / { ,  D). Moreover, it is 
obvious that ~ is separable if and only if the logic ~c*a(X, D) has the property 
that every family o f  mutually orthogonal points is at most countable. 

Thus to have the complete proof of  the theorem we have only to show that 
conditions -LP~-,oqf'~ imply the continuity of  the antiautomorphism 0. 

3. Continuity o f  the Antiautomorphism 0 
t t Let ~oq(' be a complete projective logic which satisfies conditions f 1 -~5 .  

As we have seen in Section 2, ~a is isomorphic to the projective logic ~a(V, 
( . , . ) )  of  all ( . , . )-closed linear manifolds of  a linear space V over D (R, C or Q)  
with dim V ~> 4. The isomorphism ~- : ~oq? ~ P ( V ,  ( . , . )  is constructed in the 
following way. 

Let ~ ' : =  ~a E 5e l a  finite); ~a, is a generalised geometry eventually of  
infinite dimension. Let (O, Pi), J E J, be a frame at O in ~ a ,  If  for any f E J 
we fix a point Ej on the axis rn i = 0 v Pj distinct from O and Pj we may con- 
struct the division ring Dj = Di(O, Ei,Pi) on mj with O, E i, Pi as origin, unit 

~- Proof of Lemma 2.1 : 
Let K = Range (Q) and let "F'Q be the linear manifold in .~ (jr) (the algebra of all 

bounded operators on #f)  generat-ed by the elements of £P [0, Q]. To every operator 
A ~ u/Q we can assoc~te its restrictionA to K. Obviously.~ belongs to ~(K) and the 
correspondence A -~ A from ~/'Q into & (K) can be easily shown to be linear and injec- 
tire. Therefore ~//'Q is a finite dimensional linear manifold of & (,9~). Then on "/PQ the 
induced weak, strong and uniform topologies coincide with the 'euclidean' topolo-gy. 
Considering 5e [ 0, Q] as a subset of ZV'Q one has immediately that &a[0, Q] is second 
countable and bounded; moreover, essentially by the same arguments as in the proof of 
Theorem 3.1 in Cirelli & Cotta-Ramusino (1973), it can be proved that it is closed in ~fQ. 
Therefore LP [0, Q] is second countable and compact. 
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point and point at infinity respectively. All the division rings D i are isomorphic 
and there exist a division ring D and a set of isomorphisms tp/of D i onto D such 
that the following diagrams are commutative 

Di 

D 

(3.1) 

where the isomorphism ~oi] of Di with Dj is given by soij (X) = (X V Pq)/x mj 
(Pq is the intersection point of the lines El" V & and Piv P]). 

To every point Q E ~ f '  not lying at infinity (in symbols: Q ~ ~qa-), that is 
such that, for every finite subset K of  J, 

where 

Q4; u(K) 

0 if K = 0 (the void set) 
u ( g )  = 

, £eK P / i f K • 0 ,  

we can associate the set of points {34]0}, ] e J, with M/O given by 
N 

Mj 0 =0,  V / e  J, i f Q = 0  / 

M, o =(Qvu(K-{/}))am/,  ifQ:C=O, f e K  I (3.2) 

MiQ =0, ifQ 4: 0, I ~ K ,  

where K is any finite subset of J such that Q < O v u(K) (M/2, ] e J, does not 
depend on the choice of such a subset K (Varadarajan, 1968, Lemma 5.18)). 
One has obviously 

MIO e D], ] E J (3.3) 

Let now V be the (left) free linear space over D generated by J tO [~}, 
where ~ is one more element added to the set of indices or. To every point 
Q E~g a'  such that Q ~ ,LP" we can associate a vector gO e Vin the following 
way 

gO(f) = ~j(MjQ), ] e J 
(3.4) 

ge(oo) = 1 

where 1 is the unit element of D. To shorten the notation we shall write 
gQ = £~0](MjQ), 1}. If on the contrary Q is a point belonging to ~ a .  we can 
choose a point Q' < 0 v Q such that Q' ¢ Q and Q' 4= O. Then Q' 42 o f -  and 
we can associate to Q the vector. 

ge, O'= {~j (Mj.Q), 0} (3.5) 

where 0 is the zero element of D. 
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If ~a(V, ~ )  is the generalised geometry of all finite dimensional subspaces 
of V, then 

[ ~).gQ, i f Q < f ' ~  
Q--~"/(Q):= [D.g Q'Q', i f Q < ~ "  (3.6) 

is a one-one collinearity preserving map of the set of all the points of the 
generalised geometry ~o, onto the set of all points of the generalised geometry 
~ogf(V, D) (Varadarajan, 1968, Lemma 5.25) (remark that D.gQQ' does not 
depend on the choice of the point Q'). 

The desired isomorphism ~" : ~a ~ ~f(V, (., .)) is given by 

a---+f(a):={xEV[xET(P)forsomepointP<a} (3.7) 

Let now a n be a fixed finite element of ~ such that dim a n (= dim ~P [0, 
an] ) = n ~> 4. Henceforth it will be understood that the frame (O, Pj) is an 
'adapted' one to ~f [0, an]. This simply means that O and n - 1 out of the Pj 
belong to 5e [0, an ] (these n - 1 points will be denoted by P1, P2 . . . .  , Pn- a)- 
The restriction to ~f [0, an] of the isomorphism ~" will be called ~. Under the 
ordering inherited from ~q and the orthocomplementation 

+: Aa[O, an] -+ ,Lf[O, an], b-."b+:=b*Aan (3.8) 

where b* is the orthocomplementation of b in .Lf, ~ [ 0 ,  an] is a logic. On 
~Cf(Vn, D ), where Vn is the n-dimensional linear space over D given by Vn = 
~(an) the map 

±: oLf(Vn, ~) ) -~ f (Vn ,  D), B = ~(b) -)'B±: = ~(b +) (3.9) 

is an orthocomplementation. Thus oC..f(Vn, D) is a logic and ~ is an isomorphism 
of 2oCf[0, an] with 5e(Vn, D). 

From Theorem A.1 of the Appendix the isomorphism ~" is also a homeo- 
morphism when on ~ and ~f(V, ( . , . ) )  we introduce the topologies of states. 
If on ~oCf[O, an] and on.Lf (V~, D) we consider the induced topologies, ~ as well 
as a homeomorphism. 

We now proceed to the study of the antiautomorphism 0 of D associated 
to the 0-bilinear form ( . , . )  on V x V. Let D o be the division ring dual to D, 
V* the space dual to gn and ~o~f(V*, D °) the lattice of subspaces of V* (note 
that V* is considered as an n-dimensional linear space over g)0). We introduce 
the maps 

o: ~(vn,  D) ~ ~(v*., D°), 

and 

M-~M°:= {XE Vff IX(x) = 0, Vx CM} 

(3.10) 

rl:..oCf(Vn,D)-+~f(V*,D°), M"+rI(M):=(MJ-) ° (3.11) 

One can verify that r~ is an isomorphism between geometries. On ~CP(V*, D °) 
we consider the quotient topology relative to 72 and to the topology o f f ( l / n ,  
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D), then the induced topology on D o (considered as a subset of  a certain line 
of..~P(V*, Do))  is the euclidean topology, that is the same topology as on D. 

Now we define a relation between the vectors of  Vn and V*. We say that 
x E Vn is related to ~ E V*, and write x ~ ~, i f x  4: 0, ~ v ~ 0 and r / (D .x )  = 
D o .2. From Varadarajan (1968, Lernma 3.2) we know that i f x  C Vn and 

E V* are such that x ~ ~, then for any y E Vn such that y 4 :0  and D .y  4= 
D. x there exists a unique ~ E V* such that y ~)7  and x - y ~ ~ - ~. Hence 
for every pair (x, ~)  such that x ~ ~ the following map is well defined 

rx,.~ : Vn - D . x - ~  V*; Tx , '~(y)=~ (3.12) 

where)3 is the unique vector such t h a t y  ~ and x - y ~ ~ - y. 
We want to construct explicitly such a vector ~ given any x E Vn, x 4= O, 

and a related vector x E V* chosen in a way suitable for our purposes. 
We se tx  = {xi, X n ) , y  = { y i , Y n ) , i @  ~q'= {1, 2 . . . .  , n  - 1) and suppose 

Xn :¢= O, Yn ~ 0 and Xn -¢=Yn (this is not a restriction because, with a suitable 
change of coordinates, we can always have this situation). 

We put also 

gX =XnlX = {gi x,  1), i E  if-  (3.13) 

gY = Yn~Y = {gY,  1 }, i E J?" (3.14) 

and consider the points X = ~-1 ( D .  x)  = ~-1 ( D .  gX) and Y = ~-1( D. y )  = 
~ - 1 ( D . g y )  of  ,,~[0, an]. Obviously these points do not lie at infinity and we 
have, introducing their 'coordinates '  Mi X and Mi Y (see (3.2)), 

gi x = ~oi(MiX), gi y = ~i(MiY),  i E 3" (3.15) 

Since ~7 is an isomorphism, defining 

(~ = (~ o ~)(O), P i = ( ~ o ~ ) ( P i ) ,  i C f f "  

we have that (0, Pi ) is  a frame at 0 i n ~ a ( V  *, D °) such that the points 
.Y = (r~ o ~)(X) and Y = (r /o ~ ) (y )  do not lie at infinity. The axes of  this frame 
are ~L=  O v / 3  i = Ot o ~)(mi) and on these lines we can construct the division 
rings D i = Di(O, F.i, Pi) with 0 , f f  i = (r /o ~)(Ei) andPi  as origin, unit point and 
point at infinity respectively. Moreover between these division rings and the 
division ring D 0 there exist isomorphisms such that the following diagrams 
are commutative 

D o 

(3.16) 

All the ~i and ~ij are suitable projectivities, therefore also homeomorphisms.  
In the same way as in (3.2) we associate to )~ and f" their 'coordinates '  
tl4i -~ E Di and 37/iY E f)i with respect to the frame (O, Pi) and obviously we 
have 

Mi X = (rl o ~)(MiX), ll'ii Y = (rl o ~)(MiY), i E 5  (3.17) 
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Now, as in (3.4), we define the vectors~ ,-~ ~ Vn* and~g p E V* setting 

~2= {~Oi(d~/ii~:2), lO}, ~'7" = {~oi(MiP), 1 o} (3.18) 

where 1 ° is the unit element of D °. From Varadarajan (1968, Lemma 5.25) we 
have that 

3~ = ~(D ° .~x),  f- = ~(D° .~  ~) (3.19) 

where ~, is a one-one collinearity preserving map of the set of all the points of 
~oCP(V*, D o) onto itself, namely an element of the projective group P G L ( V * )  
(MacLane & Birkhoff, 1970, Chap. XII). Hence, in virtue of a very well-known 
theorem of projective geometry (MacLane & Birkhoff, 1970, Chap. XtI, 
Theorem 17) we can write 

~(D ° . ~ff-) = D O . I '(~x), q(D ° . ~P) = D O . I'(~Y) (3.20) 

where P is an element of the group G L ( V * )  of the automorphisms of V* 
determined by ~' up to a non-zero scalar multiple of the identity automorphism 
of Vn*. 

Let now z = x - y and set 

gZ = ZnlZ = (x n _ y n ) - l ( x  _ y )  (3.21) 

The point Z = ~-1 (D. z) = ~,-1( D. gZ) does not lie at infinity and we have, 
introducing its coordinates Mi z ,  

gi z = ¢i(MiZ),  i E J (3.22) 

Between the 'coordinates' Mi z of Z and h4i ~' o f Z  = (n o ~)(Z) the relation 

Mi ~ = (rt o ~)(MiZ),  i E if" (3.23) 

holds and defining the vector ~2 E IT'* by 

~ z  = ~i(Jf'IiZ), 1 ° } (3.24) 

we can write, as abov~ 

z~ = ~(D °. ~2) = Do. ~,(~2) (3.25) 

Now 

gi Z = (Xn -- yn )  -1 (Xi - Yi) = (Xn - Yn) - l xng i  x -- (Xn -- Yn) - lyng i  y, 

i E if" (3.26) 

Since the operations on the division rings D i and  ~i are defined by projectivi- 
ties (Varadarajan, 1968, Chap. V) and r/and ~ are isomorphisms, taking into 
account (3.15), (3.17), (3.18), (3.22), (3.23) and (3.24), from (3.26) we 
obtain 

gi ~ = ( p ( x n ) - P ( Y n ) ) - l P ( x n ) g i X - ( P ( X n ) - - p ( y n ) ) - l p ( y n ) ~ i ~  l e f t - "  

(3.27) 



142 R. CIRELLI, P. COTTA-RAMUSINO AND E. NOVATI 

where 

/9 = ~s o r~ o ~ O ) s l  (3.28) 

with s any one index belonging to J - .  
From (3.20) and (3.25) we have 

~(D.  x) = D O . ~ (~2)  (3.29) 

~7(D. y)  = D o . 1~(~ :7) (3.3O) 

*7(0. (x - y ) )  = D O . F (~z )  (3.31) 

From (3.29) we infer that ~ ~ ~(~2) .  We choose as a related vector to x 
exactly ~(ffx)  and look for the unique ~ such t h a t y  ~ and x - y ~ ~,(~2) _ 
.~. Since ~7 is a lattice isomorphism and D. x 4= Dy it follows that for every non- 
zero vector } '  E ~2 (O .  y )  there exist a, b E ID o, a 4== O, b ~ O, such that 

r~(D. (x - y))  = D O . (a f'(ff 2 )  + b~') (3.32) 

If  we take as ~ '  the vector r (~ '~)  (see (3.30)) from (3.32) and (3.31) we have 

D O . (aP(~ 2") + b['(~Y)) = D O . P@'z) (3.33) 

Obviously we can choose a, b such that a + b = 1 o. Then we obtain 

a~/~ + b~i ? = ~i ~ 

whence, taking into account (3.27), 

a = (P(Xn) - P(yn) ) - Ip (xn) ,  b = -(O(Xn) - P (Yn) ) - lP(yn)  

(3.34) 

The wanted vector ~ such that y ~ 3~ and x - y ~ I" (ff~') - y is now given by 

.~ = - a - l  bI'@ ~') = (p(xn))- l  p ( yn ) I '@ ~) (3.35) 

Let now u 1, u 2 and u 3 be three independent vectors of  Vn and let ~1 C V* 
be such that u 1 ~ ~1  Setting ~2 = Tu,.~,(u 2) and h3 = TuLT~(ua) the follow- 
ing map can be defined (Varadarajan, 1968, Lemma 3.9) 

L : Vn-+ V*, 

0, i fx  =0 ,  

LX=[Tul ,~ l (X  ) w i t h l E  {1 ,2 ,3}  suchthat  D . x 4 :  D.ul, i f x ~ 0  

(3.36) 

For x 4= 0 the relation x ~ Lx holds. Thus the equation 

L (cx) = g(c, x )Lx  (3.37) 
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holds for any x 4 :0  and any c ~ U), where g(c, x)  E D O is such that g(0, x) = 0 °. 
fn Varadarajan (1968, Lemmas 3.12 and 3.13) it is shown that in fact g(c, x)  
does not depend on x and that the map 

o : D ~ D  0, a ( c ) = g ( c , x )  (3.38) 

where x is any non-zero vector of Vn, is an isomorphism of D onto D °. 
We take now u i, u 2 and u 3 such that un l 4= 0, l E { 1, 2, 3}, and O (un 1) = 1 o 

and take as a vector fil related to u I the vectorfi I = r ' (~u ' ) ,  where ~/t = 
r/(D. u 1). Moreover we choose for the vector x in (3.37) a vector y such that 
D. y 4 = D. u 1, Yn ~ 0 and yn 4= Un 1. Then from (3.13)-(3.26) we have 

Ly = p (Yn)  I'(rg ~) (3.39) 

and, for any c 4 : y n  1, 

L (cy) : p (eyn) I" (~Y) : p (c)p (Yn)  ['(g~'~) (3.40) 

Therefore, from (3.27) we obtain 

g(c, x)  = p(c), c @yn I (3.41) 

Since p is continuous, from (3.41) it follows that the isomorphism o is con- 
tinuous and then that o(c) = p(e) for every e E D. 

From Varadarajan (1968, Theorems 3 .1 ,4 .1 ,4 .5 ,  4.6 and 7.40) it follows 
that the antiautomorphism 0 is given by O(c) = dp(c )d  -1,where d is a suitable 
non-zero element of  D (obviously p is now regarded as an antiautomorphism 
of  D). Then we can conclude that the antiautomorphism 0 is continuous. 

This completes the proof of  the theorem. 

Appendix 

Let ~a be any logic and ~ the set of  pure states of  ~z °. The ' topology of 
states' is defined in the following way. 

Given any net {a~}seA in ~awe say that {a~}'converges' t o a  ~ f ,  and 
write ac~ -+ a, if for every s E ~ the net {s(as)} converges to s(a) in the usual 
topology of  R and take as the family of  closed sets the family of  the subsets 
N of  ~a which satisfy the condition: {as } is a net in N and as --> a imply a E N. 

The following important theorem can be proved. 

Theorem A. 1. LetL, eand S h e  two logics and ~: .LP-> ~ an isomorphism. 
If on ~a the topology of  states is introduced, the quotient topology on 5¢ 
relative to ~ and to the topology of  .LP is the topology of states on ~4'. 

Proof. Let ~ a n d ~ b e  the set of  pure states on &a and £P, respectively. 
For any s ~ ~ l e t  ~= s o ~-a. The correspondence s --+g obviously is a bijection 
from ~ onto ¢0. 

Let us introduce in ~ the quotient topology relative to ~ and to the topo- 
logy of states on ~ .  Then ~ and ~-1 are continuous maps (Kelley, 1955, page 
94). We can prove that every subset of  ~ c l o s e d  in the quotient topology of  

is closed also in the topology of  states of  ~ and vice versa. 
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I f B  is a subset o f  ~ closed in the quotient topology~then B = ~-1 (/~) is 
closed in ~ .  Let {~}  be a net in B converging to ~ E ~ ,  namely such that 
~(~a) ~ ~(~), V~'E ~ .  Then (a~}, where as  = ~-1 ( ~ ) ,  is a net i nB  converging 
to a = ~-1 (~) since for any s E ~ w e  can write s = s o ~ and thus we have 

s(a~) =~(Z~)--"~)=s(a), v s e ~  

Since B is closed, a belongs to B. Therefore ~ belongs to B and this shows 
that B is closed in the topology of  states. 

Conversely i r e  is a subset of  ~ closed in the topology of  states then, setting 
E = ~-1 (/~), for every net (as} in E converging to a E ~ we have that ~ } ,  
where ~a = ~(aa), is a net in E converging to ~ = ~(a) since for any ~ @ ~ we 
can write ~= s o ~-1 and thus'we have 

'](a~)=s(ao3-~s(a)=~(a,~), v~e 

Therefore a E E and E is closed, namely/~ is closed in the quotient topology. 
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